
E-BOOK

Powering Your 
Data Mesh with 
Snowflake & Immuta

+



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   2E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   2

Table of Contents

Introduction 3

Centralization for Decentralization 4

Self-Service Data Platform: Snowflake 5

Federated Governance & Security: Immuta & Snowflake 7

Data-As-A-Product 11

Conclusion 21



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   3E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   3

Introduction
Data Mesh is an architectural and organizational paradigm shift for how 
companies work with and share data internally within their organization and/
or externally with their business partners. A key component of this paradigm 
shift is treating data as a product—allowing vertical teams, “domains,” to build 
and share data products horizontally across your company. The benefits of 
this layered approach can be enormous; each vertical team builds relevant 
and valuable data products to be used and combined with other domains’ data 
products. It also allows decentralized creativity, flexibility, and utilization of data 
products while empowering centralized discovery and federated governance.

Data Mesh can be thought of like an “app store,” except the apps are not apps  
at all, they are data products. And for data products to be “installed” and “run,” 
you need discovery, storage, compute, data definitions and documentation 
and, of course, governance and security. As an example, from the context of 
Healthcare and Life Sciences industry, “app store” can be a collection of data 
topics such as patient demographics, claims, clinical and real-world evidence 
data that help rapidly uncover patient/population level health insights,  
enable better patient/member experience, accelerate drug development,  
and more. This paper discusses how combining Snowflake and Immuta builds 
the foundation to create your data mesh “app store.”



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   4

Centralization for Decentralization
Centralized standards, federated governance, and frameworks enable the scalability 
and flexibility of decentralization. To maximize the flexibility that decentralization 
provides, centralized standards, federated governance, and frameworks must be in 
place. Using our app store analogy again, you can build any app you want, but in order 
to monetize it, you must follow guidelines, publish to standards, and meet security 
controls before anyone can find or buy it. A decentralized Data Mesh is no different. 

The key components are:

1. Domain-Centric Ownership

The vertical teams, or the domains, that own the creation of the data products. They act as 
product managers and data engineers, owning their own data product roadmaps, pipelines,  
and data transformations, as well as documentation.

2. Self-Service Data Platform

A distributed but interconnected set of compute, storage, tools and capabilities that avoids silos 
and enables distributed domain teams to build and exchange data products through ingestion, 
transformation, and provisioning of data.

3. Federated Governance and Security

Horizontal interoperability standards and policies, horizontal data governance policies, and 
vertical domain-specific governance policies. This is how the company can ensure data remains 
secure while still providing data product teams the freedom and power of decentralization.

4. Data-as-a-Product

The delivery of the data products. It must be easily discoverable, subscribable, and 
understandable through documentation. A platform allows domain teams to operate 
independently and easily share data products with each other.

As you can see, the first component of Data Mesh is an organizational change; the other three 
components also involve some organization change (people, process aspects) on top of the 
technology changes. In this eBook, we will focus on technical changes required for Data Mesh  
and suggest organizations to come up with a strong change management process for an  
effective roll out of Data Mesh architecture.



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   5

Self-Service Data Platform: Snowflake
One of the key characteristics of a Data Mesh is that the data is natively accessible.  
This is critical to the exchange of data; otherwise, it is not interoperable or “joinable.” 
For example, if you were to create and share a data product without native accessibility, 
it would be impossible for the consumer of your data product to join it with other data 
products without introducing a data virtualization layer or creating an entire copy and 
transformation of your data to make it interoperable.

Snowflake solves this problem by acting as a distributed but interconnected platform that  
avoids silos and enables distributed teams to exchange data in a governed and secure manner.  
In other words, Snowflake empowers storage and computation of data in a decentralized manner, 
yet provides centralized guardrails to allow that data to be easily shared, governed, and consumed.

Here are two common Snowflake topologies that give teams self-service autonomy to create and 
share data products:

Option 1: Database per Domain 
In this scenario, each domain owns a database in a single Snowflake account. This option is most 
applicable when all domains can be appropriately supported in a single cloud region on a single 
cloud platform. It also makes it easy to define granular per-user access control if that is required 
across consuming domains. 



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   6

Option 2: Snowflake Account per Domain 
This provides maximum isolation between domains and supports domains that operate in different 
cloud regions and cloud platforms, while having more control over global Snowflake configuration.

In either option, Snowflake’s platform allows data product engineers to:

 • Model and transform data per the requirements of their data product(s) using powerful 
Snowflake features such as Snowflake Tasks, Pipes, Streams, Stored Procedures, user-defined 
functions, and Snowpark. 

 • Code them in SQL, Java, Javascript, Scala, or Python and execute them natively in the  
Snowflake platform. 

 • Design data products that consist of various forms, such as tables, views, user-defined 
functions, or external tables (that act as views over files outside of Snowflake). 

 • Collate data products that consist of multiple such objects in a schema per data product,  
along with the code that manages the modeling/transformations; or, define such composite 
data products as “listings” that can be published, shared, and discovered across accounts  
via a private listing on Snowflake marketplace.



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   7

Federated Governance & Security: 
Immuta & Snowflake
Now that your data product teams have the autonomy of a self-service data platform, 
you must add access control and security. Complexity arises here because many  
data access control policies are not domain-specific and need to be enforced globally 
and consistently across domains, regardless of the data product. But this must be  
done in a way that also allows the data product teams to layer on additional domain-
specific controls.

The following are key components of federated governance and security:

1. Ability to delegate and assign policy ownership to users globally or scoped more precisely to 
specific domain owners and their data products.

2. Ability to create a common taxonomy for how to describe and represent data through table  
and column tags and automatically tag said data.

3. Ability to author policies specific to your domain of control (global or domain-specific) 
without creating policy conflicts or disrupting existing policy.

4. Ability to detect and examine query activity against your data product(s).

Policy Ownership
It is critical that you are able to “scope power” of authoring policies to different levels of domain 
control. This allows the company to build “horizontal” policies that span all data products—policies 
that must be enforced no matter the data product based on the data they contain. Yet, you also 
need to delegate domain-specific policy authoring (“vertical policies”) to the data product domain 
owners so they can layer on domain-specific controls. As an example in the Healthcare and Life 
Sciences industry, classifying and tagging PHI and PII-sensitive data elements and ensuring the 
right governance policies are in place is critical for HIPAA compliance.

Immuta is able to scope policy authoring power in this manner through different permissions and 
data ownership. Horizontal policies that span all data products are managed through a permission 
in Immuta termed GOVERNOR. GOVERNOR is able to write consistent policies that span all data 
products, even as new data products arise, without needing any human intervention.

Vertical policies are handled through data ownership. As data products are registered with Immuta, 
the data product owners are automatically assigned ownership rights and can layer on additional 
domain-specific vertical policies. 



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   8

Common Taxonomy
A common taxonomy is not only critical to search and discovery of data products, it is required 
for creating a semantic layer on top of your physical layer as the glue between policy and data. 
For example, it is much more powerful to build a horizontal policy that targets the semantic layer 

“mask all columns tagged PII” rather than authoring policy one at a time for every physical table 
“mask columns x, y, and z in table a”, “mask columns a, b, and c in table z”, etc. 

When policies are built at the semantic layer, they apply to all relevant tables across your entire 
Data Mesh with a single policy. It also guarantees they are future-proof, because any time a new 
tag is attached to a data product (PII in our example), the horizontal policy targeting that tag will 
automatically attach to the column(s)/table(s) without human intervention.

This is only possible if all data products are tagged using a single, common taxonomy. Two 
approaches can be used:

1. Trust the data product owners to manually tag the tables and columns appropriately when 
registering data products.

2. Automatically tag the columns by inspecting their content through Immuta’s sensitive data 
discovery capability. You can use Immuta’s standard set of over 100 entity classifiers or 
customize the classifiers to discover company-specific entities. This means as soon as a new 
data product is created and registered, it will be automatically scanned and tagged, and based 
on those tags, horizontal (or vertical) policies will be applied. Immuta’s auto-tagging can be 
combined with Snowflake classifiers/tagging as well as other catalog vendors—Immuta can act 
as a central authority for data tags across the organization. Note that Immuta does not need 
to extract any data outside of your Snowflake account to discover the entities; the discovery 
engine processes completely within your Snowflake account(s).

Consistent tagging is especially challenging to accomplish without Immuta if using the “ 
account per domain” Data Mesh approach discussed above because you have no 
(straightforward) way to distribute a common tagging taxonomy across Snowflake accounts. 
Immuta is that centralized tag store, and it pushes the policies down into each account  
based on the discovered tags across accounts.



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   9

Author Policies Specific to Your Domain(s) of Control
We’ve discussed how Immuta can allow delegation of policy ownership to specific domains as 
well as use a semantic taxonomy (tags) to author policy. There are six more capabilities that make 
authoring policy with Immuta powerful for Data Mesh use cases:

1. Table-, row-, column-, and cell-level policies can all be authored against the semantic tag layer. 

2. Policy conflicts—where two or more policies hit the same column or table—are automatically 
resolved/merged and all policies enforced as expected without any human intervention.

3. Policies authored in Immuta do not need to reference users explicitly, only user metadata. This 
makes access policies more resilient to organizational changes and can impact users broadly, as 
opposed to individually. These policies can also support just-in-time manual approvals, if desired.

4. Immuta supports DevOps workflows for policy management. Declarative files that represent 
policy state can be source controlled, PR’d, and pushed to Immuta to represent that policy state.

5. Policies are represented in plain language and easily understood by legal and compliance teams, 
allowing you to easily prove your Data Mesh is compliant.

6. All policies authored by Immuta are enforced invisibly in Snowflake using native Snowflake 
governance controls, allowing users to continue querying Snowflake directly.



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   10

Detect
All actions in Immuta are audited to include queries run by users against the data products. This 
allows both users with the GOVERNANCE permission and individual data product owners to 
understand how the data products are being used and how frequently. 

Additionally, reporting to prove compliance is possible, allowing teams to understand who has 
access to what data and why.



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   11

Data-As-A-Product
The final critical component of Data Mesh is data as a product. Just like an app store, data 
products must be easily discoverable, subscribable, and understandable and Immuta provides a 
data portal user interface to support this. Key components of this data portal are that:

 • Data products are searchable by tag, name, or documentation content

 • Data product owners can fully document the data products to include documenting individual 
columns

 • Data products can be hidden from consumers based on policy

 • Consumers that don’t meet policy to gain access to a data product can be allowed access 
through manual just-in-time approvals (if prescribed in the policy)

This is demonstrated in the next section.

See It In Action
We will now walk through a concrete example to demonstrate the power of Immuta and Snowflake 
for Data Mesh.

First, we have a user, Matt, who has created a new data product that merges patients’ preexisting 
conditions with new diagnosis information. He has placed this data product in a schema under a 
database owned by his domain (his domain is “Medical Information”).

The data looks like this:



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   12

Now Matt will register that table with Immuta in order to share it on the Immuta data portal. As 
soon as that table is registered, Matt notices policies are already applied.

This is because global policies were created and applied to the table earlier by a user with 
GOVERNANCE permission. Let’s break this global policy down by looking at how it was originally 
configured.

This first part defines who is able to subscribe. In this case, it’s any user with the attribute Domain: 
Medical Information.



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   13

Next, the policy defines how the table is treated in the data portal:

The first box means that the listing will appear to users in the data portal even if they don’t meet 
the policy. It is grayed out because of the bottom box, which specifies that a data owner can 
override the policy through a manual just-in-time approval; for that to work, the table must be 
discoverable in the portal. Lastly, the middle box means that to gain access to the table, users 
must actually discover and subscribe to it in the data portal UI rather than being given immediate 
access if they meet the policy.

The next section of the data policy defines where the policy should be applied and how conflicts 
should be handled:

Selecting the first option means they would require this policy to always remain considered, no 
matter what additional policies are layered on top (effectively, a boolean AND). By selecting the 
second option, they indicate that other users’ policies can be met in lieu of theirs (effectively, a 
boolean OR). In this case, they are okay sharing responsibility.



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   14

Lastly, the user building the global policy will define where the policy should be applied, now or in 
the future:

As you can see, the policy is being applied using the semantic tag layer, specifically, the 
Discovered > PHI tag. Remember, the policy author is allowing users with Domain: Medical 
Information to subscribe, so it would make sense to target the PHI tag. This is also why the 
policy was immediately applied when Matt registered the table with Immuta, with his data product 
containing PHI that Immuta automatically discovered.

You can see the data dictionary and discovered tags here in the data portal (also notice that the 
pre_existing and diagnosis_code columns are documented):

You can see the data dictionary and discovered tags here in the data portal (also notice that the 
pre_existing and diagnosis_code columns are documented):



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   15

As mentioned, there was also a second policy on the table that appeared as soon as Matt 
registered it. Instead of a subscription policy, this is a data policy that masks sensitive PHI data and, 
again, was created globally. This is what Matt sees on his table in the portal:

While it may appear that the policy references actual physical columns, it does not. Let’s look at 
the exact policy definition created by the user with GOVERNANCE permission.

This part of the policy defines what is being masked. As you can see, it’s self-explanatory and 
written in plain language.

The last part, just like the previous subscription policy, defines where the policy should be 
applied and targets data with columns tagged PHI, which again will end up targeting Matt’s 
table. This policy was applied to Matt’s table as soon as it was registered because the PHI tags 
were automatically discovered. When Matt sees the policy in the data portal (figure above), it 
references the physical columns it was applied to based on the semantic layer.



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   16

As we know, Matt is part of Domain: Medical Information, so he is exempt from the masking 
policy. But if a user that was not in that domain subscribed to this table and queried it directly in 
Snowflake, they would see REDACTED PHI because Immuta administered that native Snowflake 
masking policy on the table. And, because the global policy was applied at data product 
registration time, this all worked without Matt having to understand every organizational policy.

Now, Matt wishes to create his own domain-specific policy to automatically allow users in group 
Physicians access to his data product. He can’t edit the global policy because that would impact 
all data products, not just his (nor does he have the permission to, anyway). Instead, he can build a 
completely separate policy using Immuta which will only target the data products he’s registered, 
and Immuta will completely handle policy merging and deconfliction.

Matt goes through the exact same policy authoring workflow that the user with GOVERNANCE 
permission did earlier. Step 1 is specifying who should have access, which is group Physicians:



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   17

Next, Matt must choose how he wants this policy treated in the data portal. In this case, Matt 
selects the first two options but does not specify that he wants just-in-time overrides of the policy 
through manual approval:

In terms of deconfliction/merging logic, Matt is also fine sharing responsibility:



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   18

Last, when deciding where the policy should apply, Matt does not need to only target his 
data products. Immuta understands that Matt does not have GOVERNANCE permission, so it 
automatically scopes the policy to only tables Matt (mvogt@immuta.com) owns. That way, Matt 
can focus the logic of where to apply the policy strictly to the semantic tags; in this case, PHI.

After saving this policy, let’s look at it in the data portal to see how it was merged. Remember, 
before Matt created the subscription policy above, the original global subscription policy that 
automatically attached to his data product looked like this:



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   19

After Matt activates the policy, he just defined and it attaches to his data product; the merged 
subscription policy looks like this:

As you can see, if a user has Domain: Medical Information OR is in group Physicians, they 
will be able to subscribe. If not, they will need a manual approval from Matt (the data owner) to 
subscribe, per the original global policy. This is a great example of federated governance where 
organizational global policies can be created independent of  domain-specific policies, yet work 
harmoniously together without manual collaboration between parties.

To bring this example full circle, let’s now look at how data product consumers discover and 
subscribe to this data product in the data portal.

To do that, we’ll use two different users:

1. Dr. John Dolittle – This user falls under group Physicians and should gain access immediately, 
without human intervention, when requested. Remember, even though Dr. Dolittle is in group 
Physicians, he is not subscribed to the data product until he actually requests access 
because that’s how the policy was defined (“Require manual subscription”).

2. Juan Dixon – This user has neither Physicians nor Domain: Medical Information, so he 
needs manual approval from Matt when requesting access.



E-Book: Powering Your Data Mesh with Snowflake and Immuta   |   20

Here’s a quick four-minute video of those two users walking through this scenario in the  
data portal.

Watch Video

Lastly, Matt is able to monitor and investigate queries against his data product:

Audit Record bea925d5-7f10-4f46-bca4f52f729a93d

{ 

 "id": "bea925d5-7f10-4f46-bca4f52f729a93d", 

 "dateTime": "1669149108453", 

 "month": 1474, 

 "profileId": 5, 

 "userId": "5", 

 "dataSourceId": 16, 

 "dataSourceName": "Medical Diagnosis", 

 "count": 1, 

 "recordType": "nativeQuery", 

 "success": true, 

 "component": "nativeSql", 

 "accessType": "query", 

 "query": "select * from medical_diagnosis;", 

 "queryId": "01a87c8f-0406-1063-0000-18152e3185d6", 

 "extra": { 

  "handler": "Snowflake", 

  "startTime": "2022-11-22 20:31:48.453000000 +0000", 

  "endTime": "2022-11-22 20:31:50.431000000 +0000", 

  "duration": "1978", 

  "nativeObject": "IMMUTA_POV_CLONE22.POV_DATA.MEDICAL_DIAGNOSIS", 

  "nativeObjectType": "table",

https://www.loom.com/share/1336c805dee74241a3673651ab4393b4
https://www.loom.com/share/1336c805dee74241a3673651ab4393b4


25 Thomson Place, 4th Floor, Boston, MA 02210        immuta.com        (800) 655-0982 © 2023 Immuta, Inc. All rights reserved.   02232023

About Immuta
Immuta is the leader in Data Security, providing data teams one universal platform to control access to 

analytical data sets in the cloud. Only Immuta can automate access to data by discovering, protecting, 

and monitoring data. Data-driven organizations around the world trust Immuta to speed time to data, 

safely share more data with more users, and mitigate the risk of data leaks and breaches. Founded in 2015, 

Immuta is headquartered in Boston, MA.

Conclusion
A true Data Mesh can be accomplished by directly addressing the four pillars discussed 
at the start of this paper:

1. Domain-centric ownership – This requires an organizational mindset shift to allowing 
decentralized ownership of data products.

2. Self-Service Data Platform – Powered by Snowflake data engineering, data warehouse/data lake, 
Data Science Data Collaboration features, and data sharing.

3. Federated Governance and Security – Immuta’s scalable policy management abstraction allows 
federated governance of the data products using native Snowflake controls.

4. Data as a Product – Immuta’s data portal manages discoverability, subscription requests, and 
audit of data products.

For more information, visit Snowflake for Data Mesh or download Immuta’s Accelerating Data-
Driven Insights with Data Mesh ebook. If you’re a Snowflake customer and would like to learn more, 
please contact your sales lead to schedule a live demo.

https://www.snowflake.com/en/use-cases/data-mesh/
https://www.immuta.com/resources/accelerating-data-driven-insights-with-data-mesh/
https://www.immuta.com/resources/accelerating-data-driven-insights-with-data-mesh/

