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AAs the adoption of machine learning (ML) 
increases, it is becoming clear that ML poses new 
privacy and security challenges that are difficult 
to prevent in practice.1 This leaves the data 
involved in ML exposed to risks in ways that are 
frequently misunderstood.2 

While traditional software systems already 
have standard best practices—such as the Fair 
Information Practice Principles (FIPPs) to guide 
privacy efforts, or the Confidentiality, Integrity 
and Availability triad to guide security activities—
there exists no widely accepted best practices 
for the data involved in ML.3 

Adapting existing standards or creating new 
ones is critical to the successful, widespread 
adoption of ML. Without such standards, 
neither privacy professionals, security 
practitioners, nor data scientists will be able to 
deploy ML with confidence that the data they 
steward is adequately protected. And without 

such protections, ML will face significant 
barriers to adoption.4 

This short whitepaper aims to create the 
beginnings of a framework for such standards 
by focusing on specific privacy and security 
vulnerabilities within ML systems. At present, 
we view these vulnerabilities as warning signs—
either of a future in which the benefits of ML 
are not fully embraced, or a future in which ML’s 
liabilities are insufficiently protected. 

Our ultimate goal is to raise awareness of new 
privacy and security issues confronting ML-
based systems—for everyone from the most 
technically proficient data scientists to the most 
legally knowledgeable privacy personnel, along 
with the many in between. Ultimately, we aim 
to suggest practical methods to mitigate these 
potential harms, thereby contributing to the 
privacy-protective and secure use of ML. 

Can we adequately protect the 
privacy and security of data 
used in machine learning?

Why ML Is Exposed to New Privacy and Security Risks 

Experience has already proven that security and privacy as applied to ML differ from the 
data protection frameworks applied to traditional software systems. The scale of the volume 
of data collected, the range of uses for existing models (beyond simply those envisioned by 
their creators), and the power of the inferences such models generate are unlike those seen 
in traditional use cases.

Past frameworks for data protection, for example, were largely premised on harms derived 
from the point of access—either to the collected data or to software systems themselves.5 In 
information security, harms began with unauthorized access to datasets or to networks. In 
privacy, overly broad or insufficiently enforced access to data again served as the starting 
point for all subsequent harms, such as unauthorized use, sharing, or sale.6 Preventing or 
managing access was, as a result, a relatively intuitive task that privacy and security teams 
could prioritize as the basis of their efforts. 

Harms from ML, however, do not always require the same type of direct access to underlying 
data to infringe upon that data’s confidentiality or to create privacy violations.7 This exposes 
ML systems to privacy and security risks in novel ways, as we will see below.8 

Both privacy and security harms can occur, for example, absent direct access to underlying 
training data because ML models themselves may subtly represent that data long after 
training.9 Similarly, the behavior of models can be manipulated without needing direct access 
to their “source code.” The types of activities that once required “hacking” under a traditional 
computing paradigm can now be carried out through other methods. 
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T facial recognition model (that reconstruction 
is depicted in the figure below).14 Another 
study, focused on ML systems that used 
genetic information to recommend dosing 
of specific medications, was able to directly 
predict individual patients’ genetic markers.15 

nn Model Extraction: This type of attack uses 
model outputs to recreate the model itself.16 
Such attacks have been publicly demonstrated 
against ML-as-a-service providers like BigML 
and Amazon Machine Learning, and can have 
implications for the privacy and security as 
well as the intellectual property or proprietary 
business logic of the underlying model.17 While 
there exist myriad types of harms that can 
arise from this type of attack, the very fact 
that models retain representations of their 
training data, as described above, makes the 
threat of extraction an inherent vulnerability 
from the privacy perspective.18

The types of security and privacy harms 
enabled by ML fall into roughly two categories: 
informational and behavioral. Informational 
harms relate to the unintended or unanticipated 
leakage of information. Behavioral harms, on the 
other hand, relate to manipulating the behavior 
of the model itself, impacting the predictions or 
outcomes of the model. We describe the specific 
“attacks” that constitute these types of harms 
below, viewing each such attack as a warning 
sign of future, more widely known and exploited 
vulnerabilities associated with ML.10 

INFORMATIONAL HARMS

nn Membership Inference: This attack involves 
inferring whether or not an individual’s 
data was contained in the data used to 
train the model, based on a sample of the 
model’s output. While seemingly complex, 
this analysis requires much less technical 
sophistication than is frequently assumed. A 
group of researchers from Cornell University, 
for example, recently released an auditing 
technique meant to help the general public 
learn if their data was used to train ML 
models, hoping to enable compliance with 
privacy regulations such as the EU’s GDPR.11  
If used by malicious third parties, such 
analysis could compromise the confidentiality 
of the model and violate the privacy of 
affected individuals by revealing whether 
they are members of sensitive classes.12

nn Model Inversion: Model inversion uses ML 
model outputs to recreate the actual data 
the model was originally trained upon.13 In 
one well-known example of model inversion, 
researchers were able to reconstruct an image 
of an individual’s face that was used to train a 

Figure 3. An image recovered using a new model 
inversion attack (left) and a training set image of the 
victim (right). The attacker is given only the person’s 
name and access to a facial recognition system that 
returns a class confidence score. 

SOURCE: Fredrikson et al.

Informational vs. Behavioral: Two Types of Harms in ML
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BEHAVIORAL HARMS

nn Poisoning: Model poisoning occurs when 
an adversary is able to insert malicious 
data into training data in order to alter 
the behavior of the model at a later point 
in time.20 This technique may be used in 
practice for a variety of malicious activities, 
such as creating an artificially low insurance 
premium for particular individuals, or 
otherwise training a model to intentionally 
discriminate against a group of people.21 
Altering the behavior of models can have 
both security and privacy implications, 
and does not necessarily require that the 
malicious actor have direct access to a 
model once deployed.

nn Evasion: Evasion occurs when input data 
is fed into an ML system that intentionally 
causes the system to misclassify that 
data.22 Such attacks may occur in a range 
of scenarios, and the input data may not 
be noticeable by humans. In one such 
example, researchers were able to cause a 
road sign classifier to misidentify road signs 

Collective Harms Posed by ML-Enabled Inferences 

ML exacerbates one particularly thorny informational harm in the world of data analytics: 
creating dangers for individuals with no relation to the underlying training data or the model 
itself. That is, if ML models are able to make increasingly powerful predictions, the ability to 
apply those predictions to new individuals raises serious privacy concerns on its own. In that 
sense, a narrow focus on protecting the privacy and security of only the individuals whose 
data is used to train ML models is mistaken; all individuals may be affected by significantly 
powerful ML. 

One such example is the recent creation of a model that can detect anxiety and depression 
in children simply based on statistical patterns in each child’s voice.19 The model can 
take ordinary input data (voice recordings) and make decisions that constitute sensitive 
diagnostic data (the presence of anxiety or depression in a specific child). As a result, the 
very act of any child speaking—beyond the children involved in this study—now contains 
new privacy implications.

Figure 2. The left image shows real graffiti on a 
stop sign, something that most humans would not 
think is suspicious. The right image shows physical 
perturbations applied to a stop sign. 

SOURCE: Eykholt et al.

by placing small black and white stickers 
on each sign (depicted below).23 This type 
of attack could cause traffic violations 
in systems such as those in autonomous 
vehicles. Similar evasion attacks have been 
demonstrated in a variety of other sensitive 
contexts as well.24 
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W nn Transparent ML Mechanisms: A motivated 
attacker may be able to learn more about 
a black-box ML model than is known by its 
original creators, creating the possibility for 
privacy and security harms that they might 
not have envisioned. While traditionally 
dominated by black-box modeling routines, 
the field of ML has experienced a renaissance 
of research and techniques for training 
transparent models, which can help to 
address such concerns. Examples of such 
techniques, with accompanying open source 
code, include explainable boosting machines 
and scalable Bayesian rule lists, referenced in 
the endnotes section of this whitepaper.29

nn Access Controls: While it is broadly true that 
attacks against ML do not require the type 
of direct access needed to cause harms in 
traditional software systems, access to the 
model output is still required in many cases.30 
For this reason, attempts to limit access to 
model output, along with methods to detect 
when such access is being abused, are 
among the most simple and effective ways to 
protect against the attacks described above.31 

nn Model Monitoring: It can be difficult to 
predict how ML systems will respond to new 
inputs, making their behavior difficult to 
manage over time.32 Detecting when such 
models are misbehaving is therefore critical 
to managing security and privacy risks. Key 

What can we do to guard against these harms in 
practice? While there are no easy answers, there 
are a series of actions that can make such harms 
less likely to occur or minimize their impact. We 
outline a handful of such approaches below.

nn Noise Injection: From a technical perspective, 
one of the most promising techniques 
involves adding tailored amounts of noise 
into the data used to train the model. Rather 
than training directly on the raw data, models 
can train on data with slight perturbations, 
which increases the difficulty of gaining 
insight into the original data or manipulating 
the model itself. One such method, known 
as differential privacy, is among the most 
widely accepted (and promising) methods of 
randomized noise injection.25 

nn Intermediaries: Another approach relies 
on inserting intermediaries—or additional 
layers—between the raw training data and the 
model, which can be implemented in a variety 
of ways.26 Federated learning, for example, 
trains models against data that is separated 
in silos, which can make the attacks discussed 
above more difficult to implement.27 Another 
method involves what is known as a “student-
teacher” approach, in which a variety of 
“student” models are trained on different 
aspects of the underlying data, which are 
then used to train the “parent” model or 
models that are actually deployed.28 

A Layered Approach to Data Protection in ML
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components of monitoring include outlining 
major risks and failure modes, devising a plan 
for how to detect complications or anomalies 
that occur, along with mechanisms for 
responding quickly if problems are detected.33

nn Model Documentation: A long-standing best 
practice in the high-stakes world of credit 
scoring, model documentation formally 
records information about modeling systems, 
including but not limited to: business 
justifications; business and IT stakeholders; 
data scientists involved in model training; 
names, locations, and properties of training 
data; assumptions and details of ML 
methodologies; test and out-of-time sample 
performance; and model monitoring plans. A 
good model report should allow future model 
owners or validators to determine whether a 
model is behaving as intended.34

nn White Hat or Red Team Hacking: Because 
many ML attacks are described in technical 
detail in peer-reviewed publications, 
organizations can use these details to test 
public-facing or mission-critical ML end 
points against known attacks. White hat 
or red teams, either internally or provided 
by third parties, may therefore be able 
to identify and potentially remediate 
discovered vulnerabilities.

nn Open Source Software Privacy and Security 
Resources: Nascent open source tools for 
private learning, accurate and transparent 
models, and debugging of potential security 
vulnerabilities are currently being released and 
are often associated with credible research or 
software organizations. While we note that 
these resources are still in development, a few 
such references are included in the endnotes 
section of this paper.35 

No Team Is an Island:  
The Importance of Cross-Functional Expertise
Ongoing, cross-functional communication is 
required to help ensure the privacy and security 
of ML systems. Data scientists and software 
developers need access to legal expertise to 
identify privacy risks at the beginning of the ML 
lifecycle. Similarly, lawyers and privacy personnel 
need access to those with design responsibilities 
and security proficiencies to understand technical 
limitations and to identify potential security 
harms. Processes for ongoing communication, for 
risk identification and management, and for clear 
setting of objectives should be established early 
and followed scrupulously to ensure that no team 
operates in isolation.

As we stated in our 2018 whitepaper, “There 
is no point in time in the process of creating, 

testing, deploying, and auditing production ML 
where a model can be ‘certified’ as being free 
from risk. There are, however, a host of methods 
to thoroughly document and monitor ML 
throughout its lifecycle to keep risk manageable, 
and to enable organizations to respond to 
fluctuations in the factors that affect this 
risk.”36 Identifying, preventing, minimizing and 
responding to such risks must be an ongoing 
and thorough process.
					   
This whitepaper aimed to outline a framework 
for understanding and addressing privacy 
and security risks in ML, and we welcome 
suggestions or comments to improve our 
analysis. Please reach out to bleong@fpf.org 
with feedback. 
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Endnotes

1	 Since we published “Beyond Explainability: A Practical Guide to Managing Risk in Machine Learning Models,” the 
importance of ML’s impact on privacy and security question has only grown. In that whitepaper, we focused on the 
general risks created by the increasing adoption of ML systems. See Andrew Burt, Brenda Leong, Stuart Shirrell and 
Xiangnong (George) Wang, “Beyond Explainability: A Practical Guide to Managing Risk in Machine Learning Models,” 
June 2018, available at https://www.immuta.com/beyond-explainability-a-practical-guide-to-managing-risk-in-machine-
learning-models/. Regarding the increasing adoption of ML generally, see “AI Adoption Advances, But Foundational 
Barriers Remain,” McKinsey & Co. Survey, November 2018 available at https://www.mckinsey.com/featured-insights/
artificial-intelligence/ai-adoption-advances-but-foundational-barriers-remain. 

2	 See, for example, Saeed Mahloujifar and Mohammad Mahmoody, “Can Adversarially Robust Learning Leverage 
Computational Hardness?” available at https://arxiv.org/abs/1810.01407 (suggesting that many of the vulnerabilities 
described in this paper are inherently connected to the fundamental construction of ML models themselves). 

3	 For an overview of the Department of Homeland Security’s version of the FIPPs, see https://www.dhs.gov/publication/
fair-information-practice-principles-fipps-0. For an overview of the “CIA” triad, see, Michelle Pruitt, “Security Best 
Practices for IT Project Managers,” SANS Institute, available at https://www.sans.org/reading-room/whitepapers/
bestprac/paper/34257.

4	 See, for example, the description of the ban on facial recognition technology by the City of San Francisco, described 
in Kate Conger, Richard Fausset and Serge F. Kovaleski, “San Francisco Bans Facial Recognition Technology,” New York 
Times, May 14, 2019 available at https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-francisco.html.

5	 We use “data protection” as a general term meant to encompass both privacy and security efforts. Our reasons for 
focusing on both privacy and security are elaborated below. Note, also, that the focus in this paper is on malicious 
actors external to the organization deploying the ML. Privacy and security concerns may, however, also arise from 
internal misuse of data or models as well.

6	 The two fields of privacy and security are often treated differently, with separate teams and different functional sets of 
expertise. But ML is causing both privacy and security concerns to overlap. It is for this reason we focus on both privacy 
and security, rather than either in isolation, in this paper.

7	 Michael Veale, Reuben Binns, and Lilian Edwards deliver a great overview of this paradigm shift in “Algorithms That 
Remember: Model Inversion Attacks and Data Protection Law,” Philos. Trans. Math. Phys. Eng. Sci. (2018) available at 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191664/. Our main point is not simply that access is not required to 
cause harms in ML, but that access means something different in ML than in traditional software systems.

8	 This does not mean, however, that previous privacy and security risks do not apply to ML—they do, and addressing such 
risks is similarly critical to the future adoption of ML. We merely focus on the aspects of ML that create novel risks in 
this paper.

9	 Specifically, ML models can “encode” various sensitive data in ways that are unpredictable or, at the very least, 
surprising. We include more details on this type of security and privacy violation below, which we refer to as 
“informational harms” enabled by ML models. One such example, which we do not explore, is the possibility for 
steganographic embedding of underlying training data, as demonstrated in Casey Chu, Andrey Zhmoginov, and Mark 
Sandler, “CycleGAN, a Master of Steganography,” available at https://arxiv.org/pdf/1712.02950.pdf.

10	 We use “attack” in keeping with existing literature on such techniques in ML. Not all uses of such techniques, however, 
constitute a direct “attack” in colloquial terms.

11	 Congzheng Song and Vitaly Shmatikov, “Auditing Data Provenance in Text-Generation Models,” available at https://
arxiv.org/pdf/1811.00513.pdf (“To help enforce data-protection regulations such as GDPR and detect unauthorized uses 
of personal data, we develop a new model auditing technique that helps users check if their data was used to train a 
machine learning model. We focus on auditing deep learning models that generate natural-language text, including 
word prediction and dialog generation. These models are at the core of popular online services and are often trained on 
personal data such as users’ messages, searches, chats, and comments.”).

12	 Such an attack could, for example, reveal whether an individual’s data was contained in a dataset of individuals with a 
particular disease, alerting an attacker to an individual’s medical conditions.

13	 Instead of learning that an individual was a member of a set of individuals who tested positive for a particular disease 
(as in a membership inference attack), for example, a model inversion attack seeks to learn information, general or 
specific, about individuals in the training data (such as trends or details regarding medical records or personal finances).

14	 Matt Fredrikson, Somesh Jha, and Thomas Ristenpart, “Model Inversion Attacks that Exploit Confidence Information and 
Basic Countermeasures,” available at https://www.cs.cmu.edu/~mfredrik/papers/fjr2015ccs.pdf. 

15	 Matthew Fredrikson, Eric Lantz, and Somesh Jha, “Privacy in Pharmacogenetics: An End-to-End Case Study of 
Personalized Warfarin Dosing,” avaliable at https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-
paper-fredrikson-privacy.pdf.

16	 For this reason, this type of attack is also referred to as “model stealing.”
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17	 Florian Tramèr, Fan Zhang, and Ari Juels, “Stealing Machine Learning Models via Prediction APIs,” available at https://
arxiv.org/pdf/1609.02943.pdf. See also Dave Gershgorn, “Stealing an AI algorithm and its underlying data is a ‘high-
school level exercise,’” Quartz, September 22, 2016 available at https://qz.com/786219/stealing-an-ai-algorithm-and-its-
underlying-data-is-a-high-school-level-exercise/.

18	 Note, also, that the tension between transparency and security also relates to this type of attack, with researchers 
demonstrating that model explanations can be used to reconstruct models themselves. Smitha Milli, Ludwig Schmidt, 
Anca D. Dragan, and Moritz Hardt, “Model Reconstruction from Model Explanations,” available at https://arxiv.org/
pdf/1807.05185.pdf. We address the issue of explainability more broadly in “Beyond Explainability: A Practical Guide to 
Managing Risk in Machine Learning Models.”

19	 Ellen W. McGinnis et al., “Giving Voice to Vulnerable Children: Machine Learning Analysis of Speech Detects Anxiety and 
Depression in Early Childhood,” IEEE Journal of Biomedical and Health Informatics, available at https://ieeexplore.ieee.
org/document/8700173.

20	 Note that the distinction between training and deployment is somewhat artificial, in that some ML systems may be 
periodically retrained based on the data they ingest while deployed. In what they call a “causative integrity attack,” 
Barreno et al. describe retraining a spam filter to ignore actual spam emails while that system is deployed. Marco 
Barreno, Blaine Nelson, Anthony D. Joseph, and J.D. Tygar, “The Security of Machine Learning,” available at https://
people.eecs.berkeley.edu/~adj/publications/paper-files/SecML-MLJ2010.pdf. The infamous case of Microsoft’s Tay 
chatbot was another illustration of the ability for live data (in this case, conversations with the chatbot conducted 
through Twitter) to alter the behavior of the model. See Rachel Metz, “Microsoft’s neo-Nazi sexbot was a great lesson 
for makers of AI assistants,” MIT Technology Review, March 27, 2018 available at https://www.technologyreview.
com/s/610634/microsofts-neo-nazi-sexbot-was-a-great-lesson-for-makers-of-ai-assistants/.

21	 See Patrick Hall, “Proposals for Model Vulnerability and Security,” O’Reilly, March 20, 2019 available at https://www.
oreilly.com/ideas/proposals-for-model-vulnerability-and-security.

22	 For that reason, an adversary is said to “evade” correct classification.

23	 Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi 
Kohno, and Dawn Song, “Robust Physical-World Attacks on Deep Learning Models,” available at https://arxiv.org/
abs/1707.08945.

24	 See, for example, Samuel G. Finlayson, John D. Bowers, Joichi Ito, Jonathan L. Zittrain, Andrew L. Beam, and Isaac S. 
Kohane, “Adversarial Attacks on Medical Machine Learning,” Science Magazine, March 22, 2019 available at https://
science.sciencemag.org/content/363/6433/1287.

25	 It is worth noting the potential downside of noise injection, which may impact the accuracy of ML models. For this 
reason, noise injection needs to be carefully weighed against potential decreases in the accuracy of the model. 

26	 “Intermediaries” is not a term used widely in the literature—we use it here as an umbrella term for the more specific 
techniques we discuss.

27	 Note that the architecture for federated learning can vary widely, and this approach is meant to be a generic 
description. See, for example, H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y 
Arcas, “Communication-efficient Learning of Deep Networks from Decentralized Data,” available at https://arxiv.org/
abs/1602.05629.

28	 See, for example, Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar, “Semi-supervised 
Knowledge Transfer for Deep Learning from Private Training Data,” available at https://arxiv.org/abs/1610.05755. Broadly 
speaking, this means there’s not just one model to attack, but a series of models, thus expanding the “attack surface” 
and making it more difficult to draw inferences about the underlying data or the inner workings of the model or models.

29	 Explainable boosting machines, for example, are available in the “interpret” package maintained by Microsoft, available 
at https://github.com/microsoft/interpret. Scalable Bayesian rule lists were designed by the Rudin Group at Duke 
University, and are available from their website at https://users.cs.duke.edu/~cynthia/papers.html.

30	 This is true for all the attacks we describe, with the exception of data poisoning.

31	 For a good overview of such controls, see Nicolas Papernot, “A Marauder’s Map of Security and Privacy in Machine 
Learning,” available at https://arxiv.org/pdf/1811.01134.pdf. One additional way to mitigate such attacks is also to limit 
access to confidence intervals - or how confident the model is in its prediction - by rounding such intervals. That is, rather 
than displaying the exact level of confidence the model has in its prediction, such intervals can simply be bucketed into 
“low,” “medium,” and “high” confidence scores. As with noise insertion techniques, however, this method may impact the 
ultimate utility of the model.

	 We note, also, with some surprise, the sparsity of techniques and discussion on this subject in the research literature. 
Access control applied to data involved in ML may be among the most promising and least examined areas in data 
protection as applied to ML.
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Endnotes, continued

32	 See D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, and Michael 
Young, “Machine Learning: The High Interest Credit Card of Technical Debt,” available at https://ai.google/research/
pubs/pub43146.

33	 We cover the more procedural aspects of this planning in Beyond Explainability. At minimum, defining what should 
be logged, at what frequency, and how it should be stored in a standardized format is essential. From a technical 
standpoint, however, much work remains in defining how best to capture output and audit ML models. For more on 
this topic, we recommend Nicolas Papernot’s suggestions on designing auditing systems for ML in “A Marauder’s Map 
of Security and Privacy in Machine Learning.” See also Reuben Binns, Peter Brown, and Valeria Gallo, “Known Security 
Risks Exacerbated by AI,” Blog of the UK Information Commissioner’s Office, May 23, 2019 available at https://ai-
auditingframework.blogspot.com/2019/05/known-security-risks-exacerbated-by-ai.html.

34	 For a contemporary perspective on model documentation, see Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker 
Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru, “Model Cards for 
Model Reporting,” available at https://arxiv.org/abs/1810.03993.

35	 See, for example, the private aggregation of teacher ensembles (PATE) models and differential privacy methods in the 
Google tensorflow repository, available at https://github.com/tensorflow/privacy; the model debugging and ML security 
methods in the Google tensorflow repository, available at https://github.com/tensorflow/cleverhans; the accurate 
transparent modeling and model debugging in the Microsoft interpret package, available at https://github.com/
Microsoft/interpret; and the novel transparent ML models released by the Rudin Group at Duke University, available at 
https://users.cs.duke.edu/~cynthia/code.html.

36	 See “Beyond Explainability: A Practical Guide to Managing Risk in Machine Learning Models.”
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