
eBOOK

The Layers
of Trust
Immuta delivers the intersection of
privacy and security to de-risk cloud
analytics for infosec teams while
preserving utility for data analytics.

2WHITE PAPER: The Layers of Trust

INTRODUCTION

Security is a driving force, particularly
for organizations making the move from
on-premises databases to SaaS-based
data warehouses where users outside the
organization (cloud provider and SaaS
provider) need to be trusted at some level.

This massive shift to the cloud - with its security concerns - has been coupled with a rapid increase in privacy

issues. To quote a recent Cisco report: “Over the past few years, data privacy has evolved from “nice to have” to

a business imperative and critical boardroom issue.” Security and privacy are colliding in the cloud and creating

challenges organizations have never seen. To tackle this problem, it’s critical to think about layers of trust and where

trust lives in conjunction with data utility tradeoffs.

To set the stage, let’s first focus on privacy. There are really four data categories of privacy:

As you can see, sensitive information can overlap with indirect identifiers (e.g., a disease you have). This

makes indirect identifiers interesting; they can straddle the line between both sensitive information and direct

identifiers. How can an indirect identifier be a direct identifier? It’s not very hard, and it has been the source of

many privacy attacks, such as the Netflix Challenge privacy scandal. When Netflix released their data for the

challenge, it contained no direct identifiers indicating who rated what movie. It simply included the ratings and

other information to help build movie predictions - one would think this is simply categorized as “other data.”

However, by taking the ratings and comparing them to other rating sites, an attacker was able to identify the

movie raters which led to the lawsuit (this is termed a link attack). The ratings themselves - presumably the

most important part for the movie prediction algorithms - is in fact an indirect identifier!

'LUHFW IGHQWLɭHUV

Think credit card

number, full name,

drivers license

Other dataIQGLUHFW IGHQWLɭHUV

Your sparsely populated

zip code, your rare car

make/model, a rare

disease you have

Sensitive Information

Your sexual preference,

a disease you have

https://www.cisco.com/c/dam/en/us/products/collateral/security/2020-data-privacy-cybersecurity-series-jan-2020.pdf
https://www.wired.com/2010/03/netflix-cancels-contest/

3WHITE PAPER: The Layers of Trust

To effectively manage privacy, you not only have to mask direct identifiers, but, you also need to mask indirect

identifiers and sensitive information - and here’s the key part - from your own employees. This creates a

conundrum, because the indirect identifiers and sensitive information in your data are exactly the same data

you want/need to analyze, as we saw from the Netflix Challenge. In other words, you can’t blindly mask for

privacy without losing utility, and you can’t provide utility from the data without losing privacy. So what do you

do? We’ll come back to that.

Security is a different but related beast.

If someone breaks into your database account, they can immediately read your data and see everyone’s

credit card number, for example. Or worse, your own disgruntled database administrator could be the culprit.

If someone has unfettered access to your data, they can see all your data no matter the privacy category.

Consider the following diagram and table and imagine there are no controls at all:

Everyone Trusted

Query

Database table cell

Read

Storage

Result

Cloud Provider Database Admin User

D
A

TA
 F

LO
W

last_name

Baskerfield

Korba

Dobell

Pittman

Lydiate

Shrive

Rymer

Toretta

Chainey

Bayles

race

Samoan

Ute

Potawatomi

Melanesian

Micronesian

Spaniard

Venezuelan

Argentinian

Paraguayan

Cherokee

gender

Female

Female

Male

Female

Female

Female

Male

Female

Female

Female

ssn

178-91-3640

118-47-0661

306-41-1756

490-30-3360

842-48-8198

190-17-7902

796-78-0964

543-51-7257

629-41-1710

809-01-9630

4WHITE PAPER: The Layers of Trust

In this scenario, all three personas can run queries against any table. Additionally, they could bypass the

database altogether and read directly from storage (note that we are oversimplifying “read” from storage in this

example; this does not mean through a service, but literally reading the data directly from the storage system).

This architecture is undesirable for any organization and defeats the purpose of the database and database

controls (which we will revisit later).

Now consider a scenario in which encryption at rest from a cloud provider is being used:

Query

Database table cell

Read

Storage

Result

Cloud Provider Database Admin User

Encryption at rest

D
A

TA
 F

LO
W

Using encryption at rest, only the cloud provider can decrypt the data on disk in storage because they

possess the decryption key. But this invites the question: how do the database queries work? In the read

interface between storage and the database, data is “in the clear” as far as the database is concerned. This

is how storage on a laptop is encrypted, it is not apparent that every time a file is opened that it is actually

being decrypted for the user in that read interface. This is the same reason why everything is still visible in the

table, it has a similar read interface decrypting between storage and the database. So what is this protecting

against? Not much, to be honest. If someone stole your cloud provider’s hardware, they would only be able

to see encrypted data on the disk instead of in the clear.

last_name

Baskerfield

Korba

Dobell

Pittman

Lydiate

Shrive

Rymer

Toretta

Chainey

Bayles

race

Samoan

Ute

Potawatomi

Melanesian

Micronesian

Spaniard

Venezuelan

Argentinian

Paraguayan

Cherokee

gender

Female

Female

Male

Female

Female

Female

Male

Female

Female

Female

ssn

178-91-3640

118-47-0661

306-41-1756

490-30-3360

842-48-8198

190-17-7902

796-78-0964

543-51-7257

629-41-1710

809-01-9630

5WHITE PAPER: The Layers of Trust

To address this, you can control your own encryption keys. This way, although the cloud provider still enables

that read interface to make everything in the clear, you can provide the key so the cloud provider can’t

decrypt on their own. This is still not a full solution, however, as we are introducing yet another persona -

the key manager. By controlling your own encryption keys, you are just shifting trust elsewhere. But this isn’t

necessarily a bad thing in this scenario, as you probably trust this person more, the keys can live outside the

cloud, and the key manager can only access the key management system - not the database.

Query

Database table cell

Read

Storage

Result

Encryption at rest

D
A

TA
 F

LO
W

Cloud Provider Database Admin User Key Manager

This scenario obviously doesn’t change what is seen in the table at all because we’ve only modified how

the storage decryption key is managed. And that’s as far as we can go on storage because it just results in

shifting trust elsewhere.

last_name

Baskerfield

Korba

Dobell

Pittman

Lydiate

Shrive

Rymer

Toretta

Chainey

Bayles

race

Samoan

Ute

Potawatomi

Melanesian

Micronesian

Spaniard

Venezuelan

Argentinian

Paraguayan

Cherokee

gender

Female

Female

Male

Female

Female

Female

Male

Female

Female

Female

ssn

178-91-3640

118-47-0661

306-41-1756

490-30-3360

842-48-8198

190-17-7902

796-78-0964

543-51-7257

629-41-1710

809-01-9630

6WHITE PAPER: The Layers of Trust

Now here comes the fun part. You don’t want everyone to be able to query every table, so to ensure this won’t

happen we now have our database administrator (DBA) implement table level controls, thereby restricting

who can query which tables. It results in this picture:

Query

Database table cell

Read

Storage

Result

Encryption at rest

Table access controls

D
A

TA
 F

LO
W

Cloud Provider Database Admin User Key Manager

Now your users can’t go around querying any table they want. All of the table above is still in the clear, but

only to certain people. For example, your DBA would be able to see it, along with the users who were entitled

to it. Theoretically, your cloud database provider would also be able to see it because they would know how

to get around the controls they provided you - this is doubtful and bad for business, but worth mentioning.

So we’re still fairly exposed and this is where things start to get tricky, which brings us back to our different

categories of privacy. A common idea is: Let’s encrypt all the data in the database like we did in storage and

we’ll control the key! Encrypting (or tokenizing) the data before it lands in the database can be commonly

termed encrypted on-ingest, (i.e., you encrypted the data before it ever landed in storage). This means that

the data is encrypted twice in storage, on the way in, and again at rest. Because of that, when it’s decrypted

out of storage through that interface, it’s still encrypted because you did it on ingest. If you take this approach,

now only your key manager needs to be trusted.

last_name

Baskerfield

Korba

Dobell

Pittman

Lydiate

Shrive

Rymer

Toretta

Chainey

Bayles

race

Samoan

Ute

Potawatomi

Melanesian

Micronesian

Spaniard

Venezuelan

Argentinian

Paraguayan

Cherokee

gender

Female

Female

Male

Female

Female

Female

Male

Female

Female

Female

ssn

178-91-3640

118-47-0661

306-41-1756

490-30-3360

842-48-8198

190-17-7902

796-78-0964

543-51-7257

629-41-1710

809-01-9630

7WHITE PAPER: The Layers of Trust

Query

Database table cell

Read

Storage

Result

Cloud Provider Database Admin User Key Manager

Encryption on ingest

Encryption at rest

D
A

TA
 F

LO
W

This is actually a terrible idea because it means your database is now completely worthless.

Why?

Let’s look at an even simpler example:

Because everything is indexed by the encrypted value (as you can see in the table above), you just turned this

row in your database:

name: Steve
credit_card_number: 123456789
age: 44
address: 8787 Diamondback Drive, College Park MD

into this:

name: 3098jgp9iwr9iewgp9rweifg9e
credit_card_number: 09q3jepf3q0e8fefg8
age: 09q34ejtgpe9rgpiofjopssd
address: 09q34peigpe9irfdinsifvods

ssn

prMjCMmSo5g=:4vivaj7tmpGk+hjC0W0gaQ==

VFK6lvJ1d68=:dz8wtuV0njXpFZIKmo95jg==

Mjc5GAAzULU=:4wkjKQI3WNrUEVWZexXtCA==

TzzEyS2P2LA=:Jkid3z98cgcTik/TsKY2Pw==

V3M7g+5GJJM=:OvRR8maUE4Dj+gW//o69XQ==

5EqSayRGKWs=:LNzY7gsCEr67i+3+e6Eh6Q==

5zM5YISGHZc=:I/moeZ7fXWdo4cmr9HJdew==

zAMBvSAqERo=:1TtOMmDPBJvTw3cBBDqv7A==

cleHnbAng44=:TUQsyC1Hh+E7ssWyY9LZUQ==

8DM8JxM9r7U=:0ezhZPGqcWUkIM2GVX6sGw==

race

TVdJME9EVXpPV1EyT0RVMk9...

WTJJNFptRmhNMlpsWXpjeFky...

Wm1Sa1pXTTRaV1ZtTkRFNFI6...

TURJNE9XVmlabVI6Tm1Oa1IU...

WW1VeFpESTRNMkV3TURSa1...

TkRCbU1tSTBPC0pqTm1JeVIU...

TmpReU56TmhNMIU0WTJGak1...

WmpNM1pqTTBNREU1TVdSa0...

WVdWalpXUTVNVGxpWmpJM0...

WmprMFpUTmhNR1ZoWWpaaE...

gender

T0RVMVkyUXdZbUUzWkRKalp...

T0RVMVkyUXdZbUUzWkRKalp...

WW1FMU5ETTVNekUwTTJFeF...

T0RVMVkyUXdZbUUzWkRKalp...

T0RVMVkyUXdZbUUzWkRKalp...

T0RVMVkyUXdZbUUzWkRKalp...

WW1FMU5ETTVNekUwTTJFeF...

T0RVMVkyUXdZbUUzWkRKalp...

T0RVMVkyUXdZbUUzWkRKalp...

T0RVMVkyUXdZbUUzWkRKalp...

last_name

T0RobVpqY3pNMlkzTIdVNFpEV...

TXpWbVpHRmtZemxpTnpZMk5...

T1dOaU9UVXhNMkUwWWpRMV...

TXpFMFltVmtPRFJoTWpnNVpq...

TURjNE9XWmhOR0UwWm1VMK...

TXpnd01EWmpNbVpoWTJVMIp...

TURSbU1XSTJObU00TURKallqW...

WVdSall6a3dZelpsTkdSa1pXSm...

WIRoa09HVXdPVFk0TkdObFlqW...

WkRnek5tUXpaRGN5TXpjek1Ea...

8WHITE PAPER: The Layers of Trust

Now when you run a query, you won’t get any results because your database doesn’t have the same fancy

interface that existed between your storage layer.

SELECT * FROM table_x WHERE name = ‘Steve’

...nothing…

SELECT * FROM table_x WHERE age > 40

...breaks. You just tried to query a text column with a numeric operation, this is because the column had to be

converted to text to encrypt the values it contains.

But what if we tokenize the data?

It’s the same problem. With tokenization, you are merely replacing the garbled, encrypted values with just

as useless, but more visually pleasing, fake values that also can’t be queried in a meaningful way. This only

addresses the “column type” problem.

Instead, what if we added the fancy interface that knows how to decrypt on the fly, like we have with the

storage layer!? That certainly can be done, but it only solves a small piece of the problem. This is because

the read from storage is “dumb.” It just needs to read blobs of data and have the interface decrypt. While the

interface between the database and the data must be “smart” (i.e., it needs to only pull relevant data from its

index based on a query), all the indexes are still based on the encrypted values. To make this work:

SELECT * FROM table_x WHERE name = ‘Steve’

The interface must convert the Steve into the encrypted value and push that down to the database so it can

find the encrypted version of Steve, like this:

SELECT * FROM table_x WHERE name = ‘3098jgp9iwr9iewgp9rweifg9e’

Voila! You get results, and they can be decrypted on read:

name: Steve
credit_card_number: 123456789
age: 44
address: 8787 Diamondback Drive, College Park MD

This is still problematic as it only works well for equality (“=”) queries.

What about this query?:

SELECT * FROM table_x WHERE age > 40

9WHITE PAPER: The Layers of Trust

Because the encryption does not take order into account, this isn’t going to work at all. For example, 40

could get encrypted to xyz and 41 could get encrypted to abc. Tokenization will have the same issue. There

are order preserving encryption algorithms, and other encryption algorithms that can support fuzzy search,

but they are less secure encryption algorithms. (To learn more about them, take a look at this paper from

MIT CSAIL, CryptDB: Protecting Confidentiality with Encrypted Query Processing.) The bottom line is, if you

were to encrypt all your data in a way that also makes it useful, you’d lose a lot of the guarantees due to the

weaker encryption algorithms.

Where does this leave us? You should encrypt on ingest sparingly or not at all. If done, it should be done

against your most risky data, typically direct identifiers - essentially anything that must be hidden at all cost

from your DBA and cloud provider. This also happens to be the category of data with the least utility. Users

won’t query it often (and if they are, it will be equality queries) or use it for their analysis. Real analysis is

reserved for the juicy categories, like indirect identifiers and sensitive data. Here’s our latest picture:

Query

Database table cell

Read

Storage

Result

Cloud Provider Database Admin User Key Manager

D
A

TA
 F

LO
W

Encryption at rest

Encryption on ingest �GLUHFW LGHQWLɭHUV RQO\�Table access controls

e�0f2
d0d3db
c5c9cf
959ba7

As you can see here, everyone can see some of the data - the indirect identifiers and sensitive data - and we

still have the table controls the DBA put in place. But only the Key Manager can see all of the data - in this

case, the SSN column. This is good because neither your DBA nor your cloud database provider can see the

highly sensitive direct identifiers (SSN) because they are encrypted using your key on-ingest. Also, if a data

breach occurs, the attacker will only see the encrypted SSN. This is still not perfect because someone could

breach your key management system and see the data. It all depends on where the breach occurs in your

trust layers because all you did was push the trust somewhere else.

last_name

Baskerfield

Korba

Dobell

Pittman

Lydiate

Shrive

Rymer

Toretta

Chainey

Bayles

race

Samoan

Ute

Potawatomi

Melanesian

Micronesian

Spaniard

Venezuelan

Argentinian

Paraguayan

Cherokee

gender

Female

Female

Male

Female

Female

Female

Male

Female

Female

Female

ssn

prMjCMmSo5g=:4vivaj7tmpGk+hjC0W0gaQ==

VFK6lvJ1d68=:dz8wtuV0njXpFZIKmo95jg==

Mjc5GAAzULU=:4wkjKQI3WNrUEVWZexXtCA==

TzzEyS2P2LA=:Jkid3z98cgcTik/TsKY2Pw==

V3M7g+5GJJM=:OvRR8maUE4Dj+gW//o69XQ==

5EqSayRGKWs=:LNzY7gsCEr67i+3+e6Eh6Q==

5zM5YISGHZc=:I/moeZ7fXWdo4cmr9HJdew==

zAMBvSAqERo=:1TtOMmDPBJvTw3cBBDqv7A==

cleHnbAng44=:TUQsyC1Hh+E7ssWyY9LZUQ==

8DM8JxM9r7U=:0ezhZPGqcWUkIM2GVX6sGw==

http://people.csail.mit.edu/nickolai/papers/raluca-cryptdb.pdf

10WHITE PAPER: The Layers of Trust

At this point, you still have indirect identifiers that are completely visible to users (which is not good). Now

you’ve come full circle to privacy controls. Many times, a solution to privacy controls is to create multiple

versions of the same table where different columns are missing so you can share those through your table

controls as needed. But this isn’t good enough. If you think back to the Netflix example, the movie ratings

were both the privacy attack failure point and the primary data being used for the analysis. This cannot be a

yes/no, binary control.

This is where anonymization techniques can be applied. These are algorithms you can use to “fuzz” the

data in a way where it retains some level of utility yet also provides a level of privacy. One such technique

is k-anonymization, which ensures there is no indirect identifier value revealed to the analyst/user which is

unique enough to open the direct identifier(s) to a linkage attack. These techniques can be applied through

data copies as well, just like we discussed with hiding columns. But why bother doing that? We can use our

fancy interface trick where instead of decrypting-on-the-fly, we are fuzzing-on-the-fly.

This is so powerful because, in many cases, it allows you to query the underlying data in meaningful ways

(which you can’t do when the data is simply encrypted) and also utilize the results for your analysis. You are

getting value from the data, while at the same time maintaining privacy. These techniques can be applied at

query time to both indirect identifiers and sensitive data. Here’s that picture:

Query

Database table cell

Read

Storage

Result

D
A

TA
 F

LO
W

Encryption at rest

Table access controls Encryption on ingest �GLUHFW LGHQWLɭHUV RQO\�

Column anonymization

Cloud Provider Database Admin User Key Manager

ssn

prMjCMmSo5g=:4vivaj7tmpGk+hjC0W0gaQ==

VFK6lvJ1d68=:dz8wtuV0njXpFZIKmo95jg==

Mjc5GAAzULU=:4wkjKQI3WNrUEVWZexXtCA==

TzzEyS2P2LA=:Jkid3z98cgcTik/TsKY2Pw==

V3M7g+5GJJM=:OvRR8maUE4Dj+gW//o69XQ==

5EqSayRGKWs=:LNzY7gsCEr67i+3+e6Eh6Q==

5zM5YISGHZc=:I/moeZ7fXWdo4cmr9HJdew==

zAMBvSAqERo=:1TtOMmDPBJvTw3cBBDqv7A==

cleHnbAng44=:TUQsyC1Hh+E7ssWyY9LZUQ==

8DM8JxM9r7U=:0ezhZPGqcWUkIM2GVX6sGw==

last_name

Baskerfield

Korba

Dobell

Pittman

Lydiate

Shrive

Rymer

Toretta

Chainey

Bayles

race

Samoan

Ute

Potawatomi

Melanesian

Micronesian

NULL

NULL

Argentinian

NULL

Cherokee

gender

Female

Female

Male

Female

Female

NULL

Male

Female

NULL

Female

11WHITE PAPER: The Layers of Trust

Look closely at the gender and race columns. We’ve applied the k-anonymization policy to them, which

suppressed highly unique values (either in combination or by themselves) that could lead to a privacy breach

with NULLs. However, we left the other values in the clear, providing a high level of utility from these columns

rather than completely removing them. Immuta offers a wide variety of privacy enhancing technologies (PETs)

like k-anonymization which allow customers to make tradeoffs between privacy and utility.

Why do it at query time? As the number of different privacy lenses into your data increases, applying these

techniques as data copies results in ELT spaghetti and role explosion. It must be dynamic through the

interface. Immuta provides an attribute-based access control (ABAC) model rather than a role-based access

control model (RBAC). The key difference with ABAC is that complex, and completely separate, rules can

evaluate many different user attributes rather than conflating WHO and WHAT they have access to in a role.

As described by the NIST Guide to Attribute Based Access Control (ABAC) Definition and Considerations:

at access-request-time, “the ABAC engine can make an access control decision based on the assigned

attributes of the requester, the assigned attributes of the object, environment conditions, and a set of policies

that are specified in terms of those attributes and conditions. Under this arrangement policies can be created

and managed without direct reference to potentially numerous users and objects, and users and objects can

be provisioned without reference to policy.”

ABAC allows for flexibility and scalability when building and enforcing policies, thereby helping you avoid the

“role explosion” required to cover all column access and anonymization scenarios when using RBAC. The

bottom line is that if you are concerned with fine-grained, column-level controls and anonymization, the

RBAC model will not scale.

And there you have it…

Security is maintained by managing your own encryption keys for the data encrypted-at-rest (storage)

as well as for the highly sensitive encrypted-on-ingest direct identifiers in your database, if desired.

Privacy is maintained through dynamic fuzzing-on-the-fly, commonly termed dynamic masking, that

occurs as part of the query interface to provide a level of utility with privacy. That same interface can

manage the encryption/decryption operations on the direct identifiers that were encrypted on-ingest.

And yes, it is possible to not encrypt anything on-ingest and instead manage all controls in the dynamic

masking interface. To do this, there are algorithms that completely obfuscate values rather than fuzz them.

This provides much more flexibility and functionality, but it’s important to remember that with this approach,

some extra trust lies with the cloud provider and your DBA rather than the Key Manager. For example, we’ve

redacted last_name on the fly in our table:

ssn

prMjCMmSo5g=:4vivaj7tmpGk+hjC0W0gaQ==

VFK6lvJ1d68=:dz8wtuV0njXpFZIKmo95jg==

Mjc5GAAzULU=:4wkjKQI3WNrUEVWZexXtCA==

TzzEyS2P2LA=:Jkid3z98cgcTik/TsKY2Pw==

V3M7g+5GJJM=:OvRR8maUE4Dj+gW//o69XQ==

5EqSayRGKWs=:LNzY7gsCEr67i+3+e6Eh6Q==

5zM5YISGHZc=:I/moeZ7fXWdo4cmr9HJdew==

zAMBvSAqERo=:1TtOMmDPBJvTw3cBBDqv7A==

cleHnbAng44=:TUQsyC1Hh+E7ssWyY9LZUQ==

8DM8JxM9r7U=:0ezhZPGqcWUkIM2GVX6sGw==

last_name

REDACTED

REDACTED

REDACTED

REDACTED

REDACTED

REDACTED

REDACTED

REDACTED

REDACTED

REDACTED

gender

Female

Female

Male

Female

Female

NULL

Male

Female

NULL

Female

race

Samoan

Ute

Potawatomi

Melanesian

Micronesian

NULL

NULL

Argentinian

NULL

Cherokee

https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-162.pdf
https://medium.com/immuta-engineering/how-privacy-killed-rbac-328edf6e4be7
https://medium.com/immuta-engineering/how-privacy-killed-rbac-328edf6e4be7

115 Broad Street, 6th Floor, Boston, MA 021100 | immuta.com | (800) 655-0982

© 2020 Immuta, Inc. All rights reserved. 052820

You are now at the intersection of security and privacy and meeting the demand of both your data analysts

and your legal and compliance teams. But how do you actually implement it? This is where Immuta comes in.

Immuta can act as that interface we’ve been discussing to execute dynamic masking and decryption. Below

is a diagram of how it works:

Security and
Privacy Control

Privacy Controls

Typical analytical work. Never
see unencrypted sensitive data

CLOUD

{dynamic
masked}

Last_Name Gender Race SSN

{dynamic
masked}

{dynamic
masked}

{encrypted
on-ingest}

Special user query that
can see unencrypted SSN

ON-PREM / IN-VPC

Key Manager Any Encryption/Decryption service

Amazon EMR Cloud Dataproc

As you can see, the typical analytical user on the right is querying the data as usual from their preferred cloud

compute engine, and Immuta is dynamically masking the data (privacy controls) based on policy, natively in

the engine. The encrypted SSN can never be decrypted natively in the cloud engine.

Should a user with special access need to see the SSN column decrypted, they can leave the native engine

and query through the Immuta proxy, which lives on-premises (if desired). In this case, that interface is

able to decrypt the data using a customer-provided encryption/decryption algorithm service. This can talk

to the key management service - the details of which are completely abstracted from Immuta. Note that

this on-premises proxy can also achieve the dynamic masking and can support any other database on-

premises or in the cloud.

